Driving down malaria transmission with engineered gene drives
Background
The last century has witnessed the introduction, establishment and expansion of mosquito-borne diseases into diverse new geographic ranges. Malaria is transmitted by female Anopheles mosquitoes. Despite making great strides over the past few decades in reducing the burden of malaria, transmission is now on the rise again, in part owing to the emergence of mosquito resistance to insecticides, antimalarial drug resistance and, more recently, the challenges of the COVID-19 pandemic, which resulted in the reduced implementation efficiency of various control programs. The utility of genetically engineered gene drive mosquitoes as tools to decrease the burden of malaria by controlling the disease-transmitting mosquitoes is being evaluated.
Garrood, W. T., Cuber, P., Willis, K., Bernardini, F., Page, N. M., & Haghighat-Khah, R. E. (2022). Driving down malaria transmission with engineered gene drives. Frontiers in Genetics, 13.